

Extraction method for PCDD/F and PCB analysis in consumer products using pressurized fluid extraction

Kay Kelterer, GALAB Laboratories GmbH, Hamburg, Germany

Different consumer product matrices

products and raw material

- Textile
- Nonwoven
- Diaper
- • •

2

Aim of study

Establish method using X-Traction from LCTech for different consumer product samples at GALAB Laboratories

Picture by LCTech

- One method for all samples matrices
- LOQ \rightarrow low ng/kg range (2,3,7,8-TCDD \rightarrow 0.05 ng/kg)
- QC performance criteria → based on US-EPA 1613, 1668 and EU-regulations for food/feed; like recovery rates for internal
 ¹³C-labelled standards

LCTech X-Traction

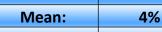
Picture: sample cell

Picture: cell holder

Picture: oven

Picture: X-Traction at GALAB

Influence in extraction efficiency : solvent, temperature (pressure) and time


Starting point

Inhouse method, X-Traction application notes and experience

n-hexane method

- 3 cycles / 5 minutes
- 40mL per cycle
- Extraction temperature set at 85°C
- Natural contaminated samples

Textile sample			
Analyte	reference value	value	recovery
	ng/kg	ng/kg	
2,3,7,8-TCDF	0.771	<loq< th=""><th>0%</th></loq<>	0%
1,2,3,7,8-PeCDF	0.486	<loq< th=""><th>0%</th></loq<>	0%
2,3,4,7,8-PeCDF	0.344	<loq< th=""><th>0%</th></loq<>	0%
1,2,3,4,7,8-HexCDF	3.862	0.068	2%
1,2,3,6,7,8-HexCDF	0.357	<loq< th=""><th>0%</th></loq<>	0%
2,3,4,6,7,8-HexCDF	0.191	<loq< th=""><th>0%</th></loq<>	0%
1,2,3,7,8,9-HexCDF	1.783	<loq< th=""><th>0%</th></loq<>	0%
1,2,3,6,7,8-HexCDD	0.557	0.049	9%
1,2,3,7,8,9-HexCDD	0.446	<loq< th=""><th>0%</th></loq<>	0%
1,2,3,4,6,7,8-HepCDF	1.236	<loq< th=""><th>0%</th></loq<>	0%
1,2,3,4,7,8,9-HepCDF	4.134	0.478	12%
1,2,3,4,6,7,8-HepCDD	10.692	<loq< th=""><th>0%</th></loq<>	0%
OCDD	22.719	1.068	5%
OCDF	1.117	<loq< th=""><th>0%</th></loq<>	0%
PCB 77	5.000	0.042	1%
PCB 81	0.273	<loq< th=""><th>0%</th></loq<>	0%
PCB 126	0.683	0.263	39%
PCB 169	1.389	0.084	6%

5

Result tables n-hexane and n-hexane/toluene 1:1

n-hexane method:

Matrix	Mean Recovery	(min)	(max)
Nonwoven	88%	80%	95%
Diaper	185%	150%	220%
Textile	4%	0%	39%

n-hexane/toluene 1:1 method:

Matrix	Mean Recovery	(min)	(max)
Nonwoven	106%	96%	118%
Diaper	247%	150%	343%
Textile	35%	8%	97%
Ref. Material	79%	28%	214%

Extraction efficiency not enough

Result table pure toluene and toluene/acetone 7:3

toluene method:

Matrix	Mean Recovery	(min)	(max)
Nonwoven	n.a.	n.a.	n.a.
Diaper	n.a.	n.a.	n.a.
Textile	93%	55%	146%
Ref. Material	138%	89%	240%

toluene/acetone 7:3 method:

Matrix	Mean Recovery	(min)	(max)
Nonwoven	n.a.	n.a.	n.a.
Diaper	113%		-
Textile	123%	88%	209%
Ref. Material	142%	91%	267%

Nonwoven and diaper Both not working for nonwoven sample blocked the system \rightarrow no extraction possible \rightarrow another solvent mixture

Result table toluene/isopropanol 7:3 v/v

toluene/isopropanol method:

40mL per cycle, 3 cycles, 5 minutes holding time, 105°C

Matrix	Mean Recovery	(min)	(max)
Nonwoven	104%	93%	123%
Textile	74%	17%	191%
Ref. Material	146%	80%	330%

Is working for all tested matrices → acceptable extraction efficiency compared to inhouse reference method

Summary

Solvent	Extraction efficiency	Matrix restriction
n-hexane	Lowest	Non
n-hexane/toluene 1:1 (v/v)	Low	Non
toluene	Very good	Yes
toluene/acetone 7:3 (v/v)	Very good	Yes
toluene/isopropanol 7:3 (v/v)	Good	Non

Compromise method for consumer products: "toluene/isopropanol 7:3 v/v"

1g of sample mixed with bulk material

40mL per cycle, 3 cycles, 5 minutes, 105°C

Outlook

Standardized methods for consumer products

Single methods for different matrices, if "true" results are necessary

More control of consumer product to avoid unwilling production of PCDD/F and PCB

Thanks for your interest!

Questions?

Kay Kelterer / GALAB Laboratories

kay.kelterer@galab.de

www.galab.com

Kay Kelterer, 10.10.2022